Cu Mesh for Flexible Transparent Conductive Electrodes

نویسندگان

  • Won-Kyung Kim
  • Seunghun Lee
  • Duck Hee Lee
  • In Hee Park
  • Jong Seong Bae
  • Tae Woo Lee
  • Ji-Young Kim
  • Ji Hun Park
  • Yong Chan Cho
  • Chae Ryong Cho
  • Se-Young Jeong
چکیده

Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes ...

متن کامل

Solution-processed metal nanowire mesh transparent electrodes.

Transparent conductive electrodes are important components of thin-film solar cells, light-emitting diodes, and many display technologies. Doped metal oxides are commonly used, but their optical transparency is limited for films with a low sheet resistance. Furthermore, they are prone to cracking when deposited on flexible substrates, are costly, and require a high-temperature step for the best...

متن کامل

Reduced graphene oxide wrapped core-shell metal nanowires as promising flexible transparent conductive electrodes with enhanced stability.

Transparent conductive electrodes (TCEs) are widely used in a wide range of optical-electronic devices. Recently, metal nanowires (NWs), e.g. Ag and Cu, have drawn attention as promising flexible materials for TCEs. Although the study of core-shell metal NWs, and the encapsulation/overcoating of the surface of single-metal NWs have separately been an object of focus in the literature, herein fo...

متن کامل

Highly conductive, flexible and scalable graphene hybrid thin films with controlled domain size as transparent electrodes.

Highly conductive, transparent, flexible and scalable graphene hybrid thin films with controlled domain size were successfully fabricated via a mechanochemical method, screen printing and pressure-assisted reduction process.

متن کامل

Highly Stretchable and Flexible Graphene/ITO Hybrid Transparent Electrode.

The flexible hybrid transparent electrode was prepared by a two-step process: graphene film was firstly grown on Cu foil by modified thermal chemical vapor deposition (CVD) and then transferred onto indium tin oxide (ITO) electrode on the polyethylene terephthalate (PET) substrate. The quality of the graphene is characterized by various analytic techniques, including the AFM, SEM, TEM, and Rama...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015